Hands-on with myQLM

> Simone Perriello

Intro

Quantum circuits basic

Advanced programmir

Useful resources

# Hands-on session based on Atos myQLM framework

Simone Perriello Email simone.perriello@polimi.it

Dipartimento di Elettronica, Informazione e Bioingegneria - DEIB Politecnico di Milano

March 24, 2022

### Plan

### Hands-on with myQLM

Simone Perriello

#### Intro

Quantum circuits basic

Advanced programmin

Useful resources

### 1 Intro

2 Quantum circuits basics

3 Advanced programming

### 4 Useful resources

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへ⊙

# Atos framework overview

### Hands-on with myQLM

Simone Perriello

#### Intro

Quantum circuits basics

Advanced programmin

Useful resources

### 2 main projects

- myQLM: open-source, can run on any computer and OS
- QLM: closed-source, run on dedicated supercomputer, available for academia (included PoliMi) and enterprises
- Different simulators are available, based both on historical and state-of-the-art proposals
- We will focus on simple simulators
  - gate-model representation of quantum operators
  - based on linear-algebra matrix operations



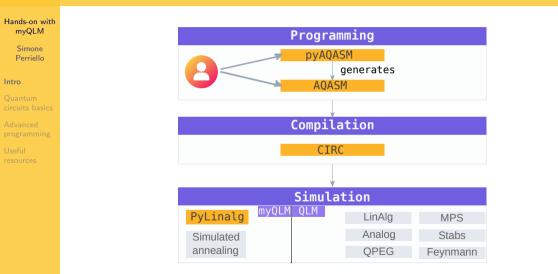
# Atos framework overview

#### Hands-on with myQLM

Simone Perriello

#### Intro

Quantum circuits basics


Advanced programmir

Jseful resources

- Main limiting factor in linear algebra simulation is memory
  - Given n qubits, naive way to represent a state is by using a vector of 2<sup>n</sup> complex numbers
- 2 linear algebra simulators developed by Atos
  - PyLinalg on myQLM, written in Python (with numpy libraries), it allows to simulate 20-25 qubits on standard laptops
  - LinAlg on QLM, closed-source, allows to simulate up to 41 qubits (using 60TiB of memory)



# Programming framework overview



# Before continuing

#### Hands-on with mvQLM

### Simone

Perriello

#### Intro

### Open myQLM notebooks

It will take time and we will need it later

https://github.com/Polimi-Courses/myqlm-notebooks/ tree/polimi2022



### Plan

### Hands-on with myQLM

Simone Perriello

#### Intro

### Quantum circuits basics

Advanced programmin

Useful resources

# 1 Intro

### 2 Quantum circuits basics

3 Advanced programming

### 4 Useful resources

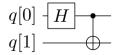
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへ⊙

# Atos Quantum Assembly (AQASM)

### Hands-on with myQLM

Simone Perriello

#### Intro


Quantum circuits basics

Advanced programmin

Useful resources

- Assembly language for quantum circuit description
  - no loop
  - no branching
  - no subroutines
- Standard gates defined
- Custom gates can be added

BEGIN qubits 2 H q[0] CNOT q[0], q[1] END



### Gates and operators

### Hands-on with myQLM

Simone Perriello

#### Intro

Quantum circuits basics

Advanced programmin

Useful resources

| Gate       | Keyword   | Qubits |
|------------|-----------|--------|
| Hadamard   | Н         | 1      |
| Pauli X    | Х         | 1      |
| Pauli Y    | Y         | 1      |
| Pauli Z    | Z         | 1      |
| Identity   | l I       | 1      |
| Phase      | S         | 1      |
| $\pi/8$    | Т         | 1      |
| X rotation | RX[theta] | 1      |
| Y rotation | RY[theta] | 1      |
| Z rotation | RZ[theta] | 1      |

| Gate          | Keyword  | Qubits |
|---------------|----------|--------|
| CNOT          | CNOT     | 2      |
| CZ            | CZ       | 2      |
| iSWAP         | ISWAP    | 2      |
| $\sqrt{SWAP}$ | SQRTSWAP | 2      |
| Toffoli       | CCNOT    | 3      |

| Operator  | Keyword |
|-----------|---------|
| Conjugate | CONJ    |
| Transpose | TRANS   |
| Dagger    | DAG     |
| Control   | CTRL    |



#### Hands-on with mvQLM

Simone Perriello

#### Intro

Quantum circuits basics

Advanced programmin

Useful resources

- Python library for generating AQASM files
- Used to simplify generation of quantum circuits
  - Loops for repeating gates
  - Functions and subroutines
  - ...
- Allows hybrid programming model
  - Controls, subroutines, ... handled with *classical* programming paradigm
  - Generated quantum circuits implement *quantum* paradigm



## **PyAQASM Gates and operators**

### Hands-on with myQLM

- Simone Perriello
- Intro
- Quantum circuits basics
- Advanced programmin
- Useful resources

- Same gate set of AQASM
  - H, X, CNOT, CCNOT
- Operators on gates become functions

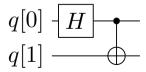
| Operator  | AQASM | PyAQASM         |
|-----------|-------|-----------------|
| Conjugate | CONJ  | conj()          |
| Transpose | TRANS | trans()         |
| Dagger    | DAG   | dag()           |
| Control   | CTRL  | ctrl(nbctrls=1) |

# Example I — EPR pair

### Hands-on with myQLM

Simone Perriello

#### Intro


Quantum circuits basics

Advanced programmir

Useful resources

### from qat.lang.AQASM import \*

pr = Program()
qr = pr.qalloc(2)
pr.apply(H, qr[0])
pr.apply(CNOT, qr[0], qr[1])
# equivalently, pr.apply(CNOT, qr)



# Hands on — EPR pair

#### Hands-on with myQLM

Simone Perriello

#### Intro

Quantum circuits basics

Advanced programmii

Useful resources

### from qat.lang.AQASM import \*

```
pr = Program()
qr = pr.qalloc(2)
pr.apply(H, qr[0])
pr.apply(CNOT, qr[0], qr[1])
```

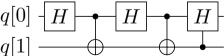
# We can export our # program into an AQASM file pr.export('pr.aqasm')



# Example II

### Hands-on with myQLM

Simone Perriello


#### Intro

### Quantum circuits basics

Advanced programmir

Useful resources from qat.lang.AQASM import \*

pr = Program()
qr = pr.qalloc(2)
for \_ in range(2):
 pr.apply(H, qr[0])
 pr.apply(CNOT, qr[0], qr[1])
pr.apply(H.ctrl(1), qr[1], qr[0])



# **CIRC** object

#### Hands-on with mvQLM

Simone Perriello

#### Intro

Quantum circuits basics

Advanced programmir

Useful resources

- Binary format of a quantum circuit
- Generated through compilation of AQASM code
  - either via command-line utility or directly through PyAQASM

- Pivot of all QLM/myQLM stack
  - simulators
  - optimizers and plugins (not seen here)
  - more trivially, functions for circuit display

# Hands on — EPR pair circuit

#### Hands-on with myQLM

Simone Perriello

#### Intro

Quantum circuits basics

Advanced programmin

Useful resources from qat.lang.AQASM import \*

pr = Program() qr = pr.qalloc(2) pr.apply(H, qr[0]) pr.apply(CNOT, qr[0], qr[1])



# We can export our program into a circuit object
cr = pr.to\_circ()
# and save it to a file
cr.dump('pr.circ')

# PyLinalg

### Hands-on with myQLM

- Simone Perriello
- Intro
- Quantum circuits basics
- Advanced programmir
- Useful resources

- Based on linear algebra
  - *n* qubits represented by a  $2^n$  vector
  - memory is the bottleneck
- Simulation time function of number of gates
- PyLinalg exploits numpy libraries
- Different simulation modes available for the same circuit
  - generate full state vector
  - generate state vector of a subset of qubits
  - strictly emulate a QPU and generate a single basis state



# Hands on — EPR pair simulation

#### Hands-on with myQLM

Simone Perriello

#### Intro

Quantum circuits basics

Advanced programmir

Useful resources

### from qat.lang.AQASM import \*

```
pr = Program()
qr = pr.qalloc(2)
pr.apply(H, qr[0])
pr.apply(CNOT, qr[0], qr[1])
```



```
from qat.qpus import PyLinalg
qpu = PyLinalg()
# generate a job containing the circuit
# and some other information
job = cr.to_job()
# Result contains all the states with non-zero amplitude
result = qpu.submit(job)
```

### Plan

### Hands-on with myQLM

Simone Perriello

Intro

Quantum circuits basic:

Advanced programming

Useful resources

### 1 Intro

2 Quantum circuits basics

3 Advanced programming

### 4 Useful resources

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q @

# PyAQASM advanced

#### Hands-on with mvQLM

Simone Perriello

Intro

Quantum circuits basics

Advanced programming

Useful resources

- Classical operations
  - Hands on Teleportation circuit
- Abstract and parametrized gates
  - $\blacksquare$  Hands on CCNOT decomposition in Clifford + T gate set

- Hands on Deutsch-Jozsa algorithm with abstract oracles
- Quantum subroutines and linking
  - Hands on Deutsch-Jozsa algorithm with real oracles
  - Hands on Bernstein-Vazirani algorithm
- A useful application for the Quantum Fourier Transform

### Plan

### Hands-on with myQLM

Simone Perriello

Intro

Quantum circuits basic

Advanced programmin

Useful resources

### 1 Intro

2 Quantum circuits basics

3 Advanced programming

### 4 Useful resources

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへ⊙

### My quantum experiments

#### Hands-on with myQLM

Simone Perriello

Intro

Quantum circuits basics

Advanced programmi

Useful resources

- All the algorithms seen here can be found on my github repository https://github.com/tigerjack/qat-experiments
- A huge collection of useful extension to the quantum languages (routines, qubit management, ...) used in my research projects can be found here https://github.com/tigerjack/qat-utils

### Atos Resources

#### Hands-on with myQLM

Simone Perriello

Intro

Quantum circuits basics

Advanced programmin

Useful resources

- https://atos.net/en/lp/myqlm
- https://join.slack.com/t/myqlmworkspace/shared\_invite/ zt-nvtt5hk3-BX53Dg5YhZaYWRnRoDtLUA?
- https://atos.net/en/solutions/quantum-learning-machine

Hands-on with myQLM

> Simone Perriello

Intro

Quantum circuits basic

Advanced programmir

Useful resources

# Thanks for your attention Email

# simone.perriello@polimi.it